What you must know to build AI systems that understand natural language
New AI solutions in question answering, chatbots, structured data extraction, text generation, and inference all require deep understanding of the nuances of human language. David Talby shares challenges, risks, and best practices for building NLU-based systems, drawing on examples and case studies from products and services built by Fortune 500 companies and startups over the past seven years.
Talk Title | What you must know to build AI systems that understand natural language |
Speakers | David Talby (Pacific AI) |
Conference | O’Reilly Artificial Intelligence Conference |
Conf Tag | Put AI to Work |
Location | New York, New York |
Date | April 16-18, 2019 |
URL | Talk Page |
Slides | Talk Slides |
Video | |
New AI solutions in question answering, chatbots, structured data extraction, text generation, and inference all require deep understanding of the nuances of human language. David Talby shares challenges, risks, and best practices for building NLU-based systems, drawing on examples and case studies from products and services built by Fortune 500 companies and startups over the past six years. David also highlights some of the differences between language understanding and other machine learning and deep learning applications. Topics include: