December 29, 2019

168 words 1 min read

Privacy-preserving machine learning in TensorFlow with TF Encrypted

Privacy-preserving machine learning in TensorFlow with TF Encrypted

Morten Dahl reviews modern cryptographic techniques such as homomorphic encryption and multiparty computation, sharing concrete examples in TensorFlow using the open source library TF Encrypted. Join in to learn how to get started with privacy-preserving techniques today, without needing to master the cryptography.

Talk Title Privacy-preserving machine learning in TensorFlow with TF Encrypted
Speakers Morten Dahl (Dropout Labs)
Conference O’Reilly Artificial Intelligence Conference
Conf Tag Put AI to Work
Location New York, New York
Date April 16-18, 2019
URL Talk Page
Slides Talk Slides
Video

Machine learning applied to healthcare or otherwise sensitive data may be blocked if privacy isn’t adequately addressed. Morten Dahl reviews modern cryptographic techniques such as homomorphic encryption and multiparty computation, sharing concrete examples in TensorFlow using the open source library TF Encrypted. You’ll discover how to make predictions without exposing the prediction input and how to fit a model without ever exposing the training data. Join in to learn how to get started with privacy-preserving techniques today, without needing to master the cryptography.

comments powered by Disqus