MLflow: An open platform to simplify the machine learning lifecycle
Developing applications that leverage machine learning is difficult. Practitioners need to be able to reproduce their model development pipelines, as well as deploy models and monitor their health in production. Corey Zumar offers an overview of MLflow, which simplies this process by managing, reproducing, and operationalizing machine learning through a suite of model tracking and deployment APIs.
Talk Title | MLflow: An open platform to simplify the machine learning lifecycle |
Speakers | Corey Zumar (Databricks) |
Conference | Strata Data Conference |
Conf Tag | Big Data Expo |
Location | San Francisco, California |
Date | March 26-28, 2019 |
URL | Talk Page |
Slides | Talk Slides |
Video | |
Developing applications that successfully leverage machine learning is difficult. Building and deploying a machine learning model is challenging to do once. Enabling other data scientists (or even yourself, one month later) to reproduce your pipeline, compare the results of different versions, track what’s running where, and redeploy and rollback updated models is much harder. Corey Zumar offers an overview of MLflow, a new open source project from Databricks that simplifies this process. MLflow provides APIs for tracking experiment runs between multiple users within a reproducible environment and for managing the deployment of models to production. Moreover, MLflow is designed to be an open, modular platform—you can use it with any existing ML library and incorporate it incrementally into an existing ML development process.