ML at Twitter: A deep dive into Twitter's timeline
Twitter is a company with massive amounts of data, so it's no wonder that the company applies machine learning in myriad of ways. Cibele Montez Halasz and Satanjeev Banerjee describe one of those use cases: timeline ranking. They share some of the optimizations that the team has madefrom modeling to infrastructurein order to have models that are both expressive and efficient.
Talk Title | ML at Twitter: A deep dive into Twitter's timeline |
Speakers | Cibele Halasz (Apple), Satanjeev Banerjee (Twitter) |
Conference | O’Reilly Artificial Intelligence Conference |
Conf Tag | Put AI to Work |
Location | New York, New York |
Date | April 16-18, 2019 |
URL | Talk Page |
Slides | Talk Slides |
Video | |
Machine learning has allowed Twitter to drive engagement, promote healthier conversations, and deliver catered advertisements. Cibele Montez Halasz and Satanjeev Banerjee describe one of those use cases: timeline ranking. They share some of the optimizations that the team has made—from modeling to infrastructure—in order to have models that are both expressive and efficient. You’ll explore the feature pipeline, modeling decisions, platform improvements, hyperparameter tuning, and architecture (alongside discretization and isotonic calibration) as well as some of the challenges Twitter faced by working with heavily text-based (sparse) data and some of the improvements the team made in its TensorFlow-based platform to deal with these use cases. Join in to gain a holistic view of one of Twitter’s most prominent machine learning use cases.