Learning from multiagent emergent behaviors in a simulated environment
Join Danny Lange to learn how to create artificially intelligent agents that act in the physical world (through sense perception and some mechanism to take physical actions, such as driving a car). You'll discover how observing emergent behaviors of multiple AI agents in a simulated virtual environment can lead to the most optimal designs and real-world practices.
Talk Title | Learning from multiagent emergent behaviors in a simulated environment |
Speakers | Danny Lange (Unity Technologies) |
Conference | O’Reilly Artificial Intelligence Conference |
Conf Tag | Put AI to Work |
Location | New York, New York |
Date | April 16-18, 2019 |
URL | Talk Page |
Slides | Talk Slides |
Video | |
Traditionally, determining the most efficient designs and practices—whether for determining how store merchandise should be arranged or where people and machines should be laid out in a factory floor—has required vast amounts of data and human assessment. These efficient designs can be the difference between a thriving company and a struggling one. Recent advancements in multiagent reinforcement learning within virtual environments, such as DeepMind’s Capture the Flag or Open AI’s Learning to Compete and Cooperate, have led to a novel approach for tackling efficient design and practices. Danny Lange explains how observing emergent behaviors of multiple AI agents in a simulated virtual environment can lead to the most optimal designs and real-world practices, all without introducing human bias or the need for vast amounts of data.