Approximation data structures in streaming data processing
Debasish Ghosh explores the role that approximation data structures play in processing streaming data. Typically, streams are unbounded in space and time, and processing has to be done online using sublinear space. Debasish covers the probabilistic bounds that these data structures offer and shows how they can be used to implement solutions for fast and streaming architectures.
Talk Title | Approximation data structures in streaming data processing |
Speakers | Debasish Ghosh (Lightbend) |
Conference | Strata Data Conference |
Conf Tag | Big Data Expo |
Location | San Jose, California |
Date | March 6-8, 2018 |
URL | Talk Page |
Slides | Talk Slides |
Video | |
Debasish Ghosh explores the role that approximation data structures (Bloom filtera, sketches, HyperLogLog, etc.) play in processing streaming data. Typically, streams are unbounded in space and time, and processing has to be done online using sublinear space. Debasish covers the probabilistic bounds that these data structures offer and shows how they can be used to implement solutions for fast and streaming architectures. Topics include: