word2vec and friends
Bruno Gonalves explores word2vec and its variations, discussing the main concepts and algorithms behind the neural network architecture used in word2vec and the word2vec reference implementation in TensorFlow. Bruno then presents a bird's-eye view of the emerging field of "anything"-2vec methods that use variations of the word2vec neural network architecture.
Talk Title | word2vec and friends |
Speakers | Bruno Goncalves (Data For Science) |
Conference | Artificial Intelligence Conference |
Conf Tag | Put AI to Work |
Location | San Francisco, California |
Date | September 18-20, 2017 |
URL | Talk Page |
Slides | Talk Slides |
Video | |
Word embeddings have received a lot of attention ever since Tomas Mikolov published word2vec in 2013 and showed that the embeddings that a neural network learned by “reading” a large corpus of text preserved semantic relations between words. As a result, this type of embedding began to be studied in more detail and applied to more serious NLP and IR tasks, such as summarization and query expansion. More recently, researchers and practitioners alike have come to appreciate the power of this type of approach, creating a burgeoning cottage industry centered around applying Mikolov’s original approach to different areas. Bruno Gonçalves explores word2vec and its variations, discussing the main concepts and algorithms behind the neural network architecture used in word2vec and the word2vec reference implementation in TensorFlow. Bruno then presents a bird’s-eye view of the emerging field of 2vec methods (phrase2vec, doc2vec, dna2vec, node2vec, etc.) that use variations of the word2vec neural network architecture. Outline: Neural network architecture and algorithms underlying word2vec A brief refresher of TensorFlow A detailed discussion of TensorFlow’s reference implementation word2vec variations and their applications