December 22, 2019

225 words 2 mins read

How the Jupyter Notebook helped fast.ai teach deep learning to 50,000 students

How the Jupyter Notebook helped fast.ai teach deep learning to 50,000 students

Although some claim you must start with advanced math to use deep learning, the best way for any coder to get started is with code. Rachel Thomas explains how fast.ai's Practical Deep Learning for Coders course uses Jupyter notebooks to provide an environment that encourages students to learn deep learning through experimentation.

Talk Title How the Jupyter Notebook helped fast.ai teach deep learning to 50,000 students
Speakers Rachel Thomas (fast.ai)
Conference JupyterCon in New York 2017
Conf Tag
Location New York, New York
Date August 23-25, 2017
URL Talk Page
Slides Talk Slides
Video

Although some claim you must start with advanced math to use deep learning, the best way for any coder to get started is with code. Rachel Thomas explains how fast.ai’s Practical Deep Learning for Coders course uses Jupyter notebooks to provide an environment that encourages students to learn deep learning through experimentation. Fast.ai wanted to help students get results fast (with no math prerequisites), so it taught them in a code-centric, application-focused way. These students are now using deep learning to identify chainsaw noise in endangered rain forests, create translation resources for Pakistani languages, reduce farmer suicides in India, diagnose breast cancer, and more. Rachel shares lessons, tips, and best practices for learning deep learning effectively so that you can set out on your own learning journey in a Jupyter notebook.

comments powered by Disqus