Human-in-the-loop: a design pattern for managing teams that leverage ML
Human-in-the-loop is an approach which has been used for simulation, training, UX mockups, etc. A more recent design pattern is emerging for human-in-the-loop (HITL) as a way to manage teams working with machine learning (ML). A variant of semi-supervised learning called active learning allows for mostly automated processes based on ML, where exceptions get referred to human experts.
Talk Title | Human-in-the-loop: a design pattern for managing teams that leverage ML |
Speakers | Paco Nathan (derwen.ai) |
Conference | Strata + Hadoop World |
Conf Tag | Make Data Work |
Location | Singapore |
Date | December 6-8, 2016 |
URL | Talk Page |
Slides | Talk Slides |
Video | |
Human-in-the-loop is an approach which has been used for simulation, training, UX mockups, etc. A more recent design pattern is emerging for human-in-the-loop (HITL) as a way to manage teams working with machine learning (ML). A variant of semi-supervised learning called active learning allows for mostly automated processes based on ML, where exceptions get referred to human experts. Those human judgements in turn help improve new iterations of the ML models. This talk reviews key case studies about active learning, plus other approaches for human-in-the-loop which are emerging among AI applications. We’ll consider some of the technical aspects — including available open source projects — as well as management perspectives for how to apply HITL: In particular, we’ll examine use cases at O’Reilly Media where ML pipelines for categorizing content are trained by subject matter experts providing examples, based on HITL and leveraging open source [Project Jupyter](https://jupyter.org/ for implementation).